Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

Identifieur interne : 002133 ( Main/Exploration ); précédent : 002132; suivant : 002134

Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

Auteurs : Antoine Harfouche [Italie] ; Richard Meilan [États-Unis] ; Arie Altman [Israël]

Source :

RBID : pubmed:24695726

Descripteurs français

English descriptors

Abstract

Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed.

DOI: 10.1093/treephys/tpu012
PubMed: 24695726


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.</title>
<author>
<name sortKey="Harfouche, Antoine" sort="Harfouche, Antoine" uniqKey="Harfouche A" first="Antoine" last="Harfouche">Antoine Harfouche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100</wicri:regionArea>
<wicri:noRegion>Viterbo 01100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meilan, Richard" sort="Meilan, Richard" uniqKey="Meilan R" first="Richard" last="Meilan">Richard Meilan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Altman, Arie" sort="Altman, Arie" uniqKey="Altman A" first="Arie" last="Altman">Arie Altman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel arie.altman@mail.huji.ac.il.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100</wicri:regionArea>
<wicri:noRegion>Rehovot 76100</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24695726</idno>
<idno type="pmid">24695726</idno>
<idno type="doi">10.1093/treephys/tpu012</idno>
<idno type="wicri:Area/Main/Corpus">002244</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002244</idno>
<idno type="wicri:Area/Main/Curation">002244</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002244</idno>
<idno type="wicri:Area/Main/Exploration">002244</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.</title>
<author>
<name sortKey="Harfouche, Antoine" sort="Harfouche, Antoine" uniqKey="Harfouche A" first="Antoine" last="Harfouche">Antoine Harfouche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100</wicri:regionArea>
<wicri:noRegion>Viterbo 01100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meilan, Richard" sort="Meilan, Richard" uniqKey="Meilan R" first="Richard" last="Meilan">Richard Meilan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Altman, Arie" sort="Altman, Arie" uniqKey="Altman A" first="Arie" last="Altman">Arie Altman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel arie.altman@mail.huji.ac.il.</nlm:affiliation>
<country wicri:rule="url">Israël</country>
<wicri:regionArea>Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100</wicri:regionArea>
<wicri:noRegion>Rehovot 76100</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Epigenomics (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genetic Engineering (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Magnoliopsida (genetics)</term>
<term>Magnoliopsida (growth & development)</term>
<term>Magnoliopsida (physiology)</term>
<term>Phenotype (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Transgenes (MeSH)</term>
<term>Trees (genetics)</term>
<term>Trees (growth & development)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Arbres (croissance et développement)</term>
<term>Arbres (génétique)</term>
<term>Arbres (physiologie)</term>
<term>Biomasse (MeSH)</term>
<term>Forêts (MeSH)</term>
<term>Génie génétique (MeSH)</term>
<term>Génomique (MeSH)</term>
<term>Magnoliopsida (croissance et développement)</term>
<term>Magnoliopsida (génétique)</term>
<term>Magnoliopsida (physiologie)</term>
<term>Phénotype (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sécheresses (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Épigénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Magnoliopsida</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Magnoliopsida</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Magnoliopsida</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Biomass</term>
<term>Droughts</term>
<term>Epigenomics</term>
<term>Forests</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Genetic Engineering</term>
<term>Genetic Variation</term>
<term>Genomics</term>
<term>Phenotype</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Biomasse</term>
<term>Forêts</term>
<term>Génie génétique</term>
<term>Génomique</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Stress physiologique</term>
<term>Sécheresses</term>
<term>Transduction du signal</term>
<term>Transgènes</term>
<term>Variation génétique</term>
<term>Épigénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24695726</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.</ArticleTitle>
<Pagination>
<MedlinePgn>1181-98</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpu012</ELocationID>
<Abstract>
<AbstractText>Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed. </AbstractText>
<CopyrightInformation>© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harfouche</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meilan</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Altman</LastName>
<ForeName>Arie</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel arie.altman@mail.huji.ac.il.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057890" MajorTopicYN="N">Epigenomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">acclimation</Keyword>
<Keyword MajorTopicYN="N">epigenetic control</Keyword>
<Keyword MajorTopicYN="N">genetic variation</Keyword>
<Keyword MajorTopicYN="N">natural population</Keyword>
<Keyword MajorTopicYN="N">regulatory networks</Keyword>
<Keyword MajorTopicYN="N">signaling</Keyword>
<Keyword MajorTopicYN="N">stress</Keyword>
<Keyword MajorTopicYN="N">tolerance</Keyword>
<Keyword MajorTopicYN="N">tree growth</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24695726</ArticleId>
<ArticleId IdType="pii">tpu012</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpu012</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
<li>Italie</li>
<li>États-Unis</li>
</country>
<region>
<li>Indiana</li>
</region>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Harfouche, Antoine" sort="Harfouche, Antoine" uniqKey="Harfouche A" first="Antoine" last="Harfouche">Antoine Harfouche</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Indiana">
<name sortKey="Meilan, Richard" sort="Meilan, Richard" uniqKey="Meilan R" first="Richard" last="Meilan">Richard Meilan</name>
</region>
</country>
<country name="Israël">
<noRegion>
<name sortKey="Altman, Arie" sort="Altman, Arie" uniqKey="Altman A" first="Arie" last="Altman">Arie Altman</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002133 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002133 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24695726
   |texte=   Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24695726" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020